This study presents a comprehensive approach that addresses the challenges of scientometric analysis in the rapidly evolving field of Artificial Intelligence (AI). By combining search terms related to AI with the advanced language processing capabilities of generative pre-trained transformers (GPT), we developed a highly accurate method for identifying and analyzing AI-related articles in the Web of Science (WoS) database. Our multi-step approach included filtering articles based on WoS citation topics, category, keyword screening, and GPT classification. We evaluated the effectiveness of our method through precision and recall calculations, finding that our combined approach captured around 94% of AI-related articles in the entire WoS corpus with a precision of 90%. Following this, we analyzed the publication volume trends, revealing a continuous growth pattern from 2013 to 2022 and an increasing degree of interdisciplinarity. We conducted citation analysis on the top countries and institutions and identified common research themes using keyword analysis and GPT. This study demonstrates the potential of our approach to facilitate accurate scientometric analysis, by providing insights into the growth, interdisciplinary nature, and key players in the field.
翻译:本研究提出了一种应对人工智能这个快速发展领域里的科学计量分析难题的综合方法。我们结合了与人工智能相关的搜索术语和生成式预训练转换(GPT)的高级语言处理能力,开发了一种高度准确的方法,用于在科学引文索引(WoS)数据库中识别和分析与人工智能相关的文章。我们的多步骤方法包括基于WoS引文主题、类别、关键词筛选和GPT分类的文章过滤。我们通过精确度和召回率计算评估了我们方法的有效性,发现我们的综合方法能够覆盖整个WoS语料库中约94%的人工智能相关文章,准确率为90%。随后,我们对发表数量趋势进行了分析,发现从2013年到2022年,人工智能领域呈现持续增长的趋势,并具有日益增加的跨学科性质。我们对前几名国家和机构进行了引文分析,并使用关键词分析和GPT确定了常见的研究主题。该研究展示了我们方法揭示人工智能领域增长、跨学科性和主要研究者的潜力和价值。