In this paper, we introduce a higher-order multiscale method for time-dependent problems with highly oscillatory coefficients. Building on the localized orthogonal decomposition (LOD) framework, we construct enriched correction operators to enrich the multiscale spaces, ensuring higher-order convergence without requiring assumptions on the coefficient beyond boundedness. This approach addresses the challenge of a reduction of convergence rates when applying higher-order LOD methods to time-dependent problems. Addressing a parabolic equation as a model problem, we prove the exponential decay of these enriched corrections and establish rigorous a priori error estimates. Numerical experiments confirm our theoretical results.
翻译:本文针对具有高度振荡系数的时间依赖问题,提出了一种高阶多尺度方法。基于局部正交分解(LOD)框架,我们构造了增强的校正算子来丰富多尺度空间,确保在仅要求系数有界性假设的前提下实现高阶收敛。该方法解决了将高阶LOD方法应用于时间依赖问题时收敛率下降的挑战。以抛物型方程作为模型问题,我们证明了这些增强校正的指数衰减性,并建立了严格的先验误差估计。数值实验验证了我们的理论结果。