Integration of machine learning (ML) in 5G-based Internet of Vehicles (IoV) networks has enabled intelligent transportation and smart traffic management. Nonetheless, the security against adversarial poisoning attacks is also increasingly becoming a challenging task. Specifically, Deep Reinforcement Learning (DRL) is one of the widely used ML designs in IoV applications. The standard ML security techniques are not effective in DRL where the algorithm learns to solve sequential decision-making through continuous interaction with the environment, and the environment is time-varying, dynamic, and mobile. In this paper, we propose a Gated Recurrent Unit (GRU)-based federated continual learning (GFCL) anomaly detection framework against Sybil-based data poisoning attacks in IoV. The objective is to present a lightweight and scalable framework that learns and detects the illegitimate behavior without having a-priori training dataset consisting of attack samples. We use GRU to predict a future data sequence to analyze and detect illegitimate behavior from vehicles in a federated learning-based distributed manner. We investigate the performance of our framework using real-world vehicle mobility traces. The results demonstrate the effectiveness of our proposed solution in terms of different performance metrics.


翻译:在基于5G的车辆互联网(IoV)网络中,机器学习整合(ML)的标准化 ML 安全技术在基于5G的车辆互联网(IoV)网络中并不有效,这使得智能交通和智能交通管理得以实现,然而,防止对抗性中毒袭击的安全也日益成为一项具有挑战性的任务。具体地说,深强化学习(DRL)是IoV应用中广泛使用的ML设计之一。标准 ML安全技术在DRL中并不有效,因为在DRL中,算法学会通过与环境的连续互动解决顺序决策,而环境是分时间、动态和移动的。在本文中,我们提议建立一个基于Gated 经常单位(GRU)的联动持续学习(GFCL)异常检测框架,以对抗IoV中基于Sybil的数据中毒袭击。目标是提出一个轻度和可缩放的框架,在没有由攻击样品构成的主要培训数据集的情况下学习和检测非法行为。我们使用GRU来预测未来数据序列,以基于联合学习分布的方式分析和检测来自车辆的非法行为。我们框架的运行情况,我们使用真实世界车辆移动痕迹来调查框架的执行情况。结果显示我们拟议解决办法的绩效。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月20日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员