项目名称: 离子液体调控复合金属硫化物纳米材料构筑及可见光分解水制氢研究

项目编号: No.21273010

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 杜记民

作者单位: 安阳师范学院

项目金额: 80万元

中文摘要: 复合金属硫化物的能带结构可以通过控制组成进行调控,在光催化剂研究领域具有广阔的应用前景,但其利用太阳能光催化制氢的效率还需提高。本项目通过离子液体调控作用采用回流共沉淀、金属置换、溶剂热等方法可控合成窄带隙复合金属硫化物纳米光催化剂I-III-VI2 (I=Cu,Ag,Zn,Cd;III=Ga,In;Ⅵ2=S,Se,Te)。通过掺杂、固溶、复合等方式调节复合金属硫化物的组成,改变其能带结构,获得最大限度吸收可见光的性能。基于复合金属硫化物微观结构与形貌的可调性,可有效的产生制氢活性位与电子空穴的迁移路径,促使电子-空穴的定向迁移,有效抑制电子和空穴复合,从而提高其制氢的活性。为评估其光分解水制氢的性能,在不同物质作电子给体条件下进行可见光分解水的研究,探索建立金属硫化物的结构组成、能带结构、形貌等因素与光分解水活性的构效关系,提出合理的光催化机理,为新型光催化剂研制提供理论基础和科学依据。

中文关键词: 多孔结构;光催化剂;TiO2;光分解水;半导体

英文摘要: Band structure of Composite metal sulfides ause can be conrolled by adjusting their composition with various application fields . But the hydrogen production efficency needs to be improved in the use of solar energy. Therefore, the composite-metal sulfide nanometer photocatalyst I - III - VI2 ( I = Cu, Ag, Zn, Cd; III = Ga, In; VI2 = S, Se, Te ) were synthesized through the refluxing coprecipitation, solid solution and composting method and so on with ionic liquid as tuning reagent in this project. The energy band gap of the light catalyst can be controlled via dopping and solid solution in order to meet the maximum absorption of the visible light based on the energy-gap-adjusting theory. Hydrogen production activity and electron-hole migration can be prompted with the microscopic structure and special shape, for the sake of inhibiting electron-hole recombination to better the photocatalytic hydrogen production activity. To value the performance of the water splitting of the photocatalyst, the experiment of water splitting was carried out in the different substance of electron donor under the condition of visible light. Meanwhile, the systematic investigation on the metal composition, energy band structure, morphology and sizes as well as other factors on the photocatalytic activity. The reasonable photocatalyti

英文关键词: porous structures;photocatalyst;TiO2;light-driven water splitting;semicondutors

成为VIP会员查看完整内容
0

相关内容

专知会员服务
50+阅读 · 2021年10月16日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
68+阅读 · 2021年3月27日
【CVPR2021】细粒度多标签分类
专知会员服务
59+阅读 · 2021年3月8日
【KDD2020】 半监督迁移协同过滤推荐
专知会员服务
19+阅读 · 2020年10月21日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
专知会员服务
28+阅读 · 2020年8月8日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关主题
相关VIP内容
专知会员服务
50+阅读 · 2021年10月16日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
68+阅读 · 2021年3月27日
【CVPR2021】细粒度多标签分类
专知会员服务
59+阅读 · 2021年3月8日
【KDD2020】 半监督迁移协同过滤推荐
专知会员服务
19+阅读 · 2020年10月21日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
专知会员服务
28+阅读 · 2020年8月8日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员