Many fault diagnosis methods of rotating machines are based on discriminative features extracted from signals collected from the key components such as bearings. However, under complex operating conditions, periodic impulsive characteristics in the signal related to weak fault information are often obscured by noise interference. Consequently, existing approaches struggle to learn interpretable fault-related features in such scenarios. This paper proposes a novel transformer framework (FE-MCFormer) to extract interpretable time-frequency features, with the aim of improving the fault detection accuracy and intrepretability of rotating machines under strong noise. First, a Fourier adaptive reconstruction embedding layer is introduced as a global information encoder in the model. Subsequently, a time-frequency fusion module is designed, further improve the model robustness and interpretability. The effectiveness of FE-MCFormer in machine fault diagnosis is validated through three case studies.


翻译:许多旋转机械的故障诊断方法依赖于从轴承等关键部件采集的信号中提取判别性特征。然而,在复杂工况下,信号中与微弱故障信息相关的周期性冲击特征常被噪声干扰所掩盖,导致现有方法难以在此类场景下学习到可解释的故障相关特征。本文提出一种新颖的Transformer框架(FE-MCFormer),旨在提取可解释的时频特征,以提高强噪声环境下旋转机械故障检测的准确性与可解释性。首先,模型引入傅里叶自适应重构嵌入层作为全局信息编码器;随后,设计时频融合模块,以进一步提升模型的鲁棒性与可解释性。通过三项案例研究,验证了FE-MCFormer在机械故障诊断中的有效性。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员