We propose a class of nonstationary processes that characterize varying directional associations in space and time for point-referenced data. Our construction is based on local mixtures of sparse directed acyclic graphs (DAGs). In stochastically choosing DAG edges from a "bag," we account for uncertainty in directional correlation patterns across a domain. The resulting "bag of DAGs" processes (BAGs) lead to interpretable nonstationarity and scalability for large data due to sparsity of all DAGs in the bag. We are motivated by spatiotemporal modeling of air pollutants in which a directed edge in a DAG represents a prevailing wind direction causing some associated covariance in the pollutants. We outline Bayesian hierarchical models embedding the resulting nonstationary BAGs and illustrate inferential and performance gains of our methods compared to existing alternatives. We analyze fine particulate matter (PM2.5) in California with high-resolution data from low-cost air quality sensors. The code for all analyses is publicly available at https://github.com/jinbora0720/BAG.
翻译:我们建议了一组非静止过程,这种过程在空间和时间上具有不同方向性联系的特点,用于提供点参照数据。我们的构造基于分散的定向环形图(DAGs)的当地混合物。在从一个“包”中随机选择DAG边缘时,我们考虑到一个域方向相关性模式的不确定性。由此产生的“一袋DAGs”过程(BAGs)导致大量数据不可解释的不可见性和可缩放性,因为包中所有DAGs的宽度很大。我们之所以这样做,是因为对空气污染物进行随机模拟,使DAG的定向边缘代表一种普遍的风向方向,造成污染物的某些相关差异。我们概述了贝叶的等级模型,将由此产生的非静态BAGs嵌入其中,并说明了我们方法与现有替代方法相比的推断和性能收益。我们用低成本空气质量传感器的高分辨率数据分析了加利福尼亚的微粒物质(PM2.5)。所有分析的代码都公布在https://github.com/jinbora0720/BAG。