Information-theoretic quantities, such as conditional entropy and mutual information, are critical data summaries for quantifying uncertainty. Current widely used approaches for computing such quantities rely on nearest neighbor methods and exhibit both strong performance and theoretical guarantees in certain simple scenarios. However, existing approaches fail in high-dimensional settings and when different features are measured on different scales.We propose decision forest-based adaptive nearest neighbor estimators and show that they are able to effectively estimate posterior probabilities, conditional entropies, and mutual information even in the aforementioned settings.We provide an extensive study of efficacy for classification and posterior probability estimation, and prove certain forest-based approaches to be consistent estimators of the true posteriors and derived information-theoretic quantities under certain assumptions. In a real-world connectome application, we quantify the uncertainty about neuron type given various cellular features in the Drosophila larva mushroom body, a key challenge for modern neuroscience.


翻译:信息理论数量,如有条件的昆虫和相互信息,是量化不确定性的关键数据摘要。目前广泛使用的计算这类数量的方法依靠最近的近邻方法,在某些简单假设中,既有方法在性能和理论上都有很强的保证。然而,在高维环境中,当在不同尺度上测量不同特征时,现有方法失败。我们提出基于森林的决定性适应性的最近邻估计器,并表明它们能够有效地估计后生概率、有条件的寄生虫和即使在上述环境中的相互信息。我们广泛研究了分类和后生概率估计的功效,并证明某些基于森林的方法在某些假设下是真实的后生体和衍生信息理论数量的一致估计。在现实世界连接器应用中,我们量化了在Droophilia 幼苗体中各种细胞特征下神经型不确定性,这是现代神经科学面临的一个关键挑战。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
121+阅读 · 2019年12月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年11月28日
Arxiv
27+阅读 · 2020年12月24日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员