A neural radiance field (NeRF) is a scene model supporting high-quality view synthesis, optimized per scene. In this paper, we explore enabling user editing of a category-level NeRF - also known as a conditional radiance field - trained on a shape category. Specifically, we introduce a method for propagating coarse 2D user scribbles to the 3D space, to modify the color or shape of a local region. First, we propose a conditional radiance field that incorporates new modular network components, including a shape branch that is shared across object instances. Observing multiple instances of the same category, our model learns underlying part semantics without any supervision, thereby allowing the propagation of coarse 2D user scribbles to the entire 3D region (e.g., chair seat). Next, we propose a hybrid network update strategy that targets specific network components, which balances efficiency and accuracy. During user interaction, we formulate an optimization problem that both satisfies the user's constraints and preserves the original object structure. We demonstrate our approach on various editing tasks over three shape datasets and show that it outperforms prior neural editing approaches. Finally, we edit the appearance and shape of a real photograph and show that the edit propagates to extrapolated novel views.


翻译:神经光亮场( NERF) 是一个支持高质量视图合成的场景模型, 每个场景都优化了。 在本文中, 我们探索一个功能化的用户编辑工具, 在形状类别上培训了一个类别级的 NERF - 也称为有条件的光亮场 。 具体地说, 我们引入了一种向 3D 空间 传播粗2D 用户刻字的方法, 以修改本地区域的颜色或形状 。 首先, 我们提出一个有条件的光亮场, 包含新的模块网络组件, 包括一个在天体中共享的形状分支 。 观察同一类别的多个实例, 我们的模型在没有任何监督的情况下学习了内部部分的语义, 从而允许向整个 3D 区域( 如主席座位) 传播粗2D 用户刻字。 下一步, 我们提出一个混合网络更新策略, 瞄准特定的网络组件, 以平衡效率和准确性。 在用户互动中, 我们提出一个最优化的问题, 既满足用户的制约, 也保存原始对象结构 。 我们展示了我们关于三个形状数据集的各种编辑任务的方法, 并显示它超越了之前的图像的外观。 最后, 我们修改了真实的图像的外观。

0
下载
关闭预览

相关内容

专知会员服务
72+阅读 · 2021年5月28日
专知会员服务
50+阅读 · 2021年5月19日
专知会员服务
43+阅读 · 2021年4月18日
专知会员服务
19+阅读 · 2021年3月18日
【CVPR2021】自监督几何感知
专知会员服务
45+阅读 · 2021年3月6日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2020年7月16日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员