It has been a great challenge to develop robots that are able to perform complex movement patterns with high speed and, simultaneously, high accuracy. Copepods are animals found in freshwater and saltwater habitats that can have extremely fast escape responses when a predator is sensed by performing explosive curved jumps. Here, we present a design and build prototypes of a combustion-driven underwater soft robot, the "copebot", that, like copepods, is able to accurately reach nearby predefined locations in space within a single curved jump. Because of an improved thrust force transmission unit, causing a large initial acceleration peak (850 Bodylength*s-2), the copebot is 8 times faster than previous combustion-driven underwater soft robots, whilst able to perform a complete 360{\deg} rotation during the jump. Thrusts generated by the copebot are tested to quantitatively determine the actuation performance, and parametric studies are conducted to investigate the sensitivities of the input parameters to the kinematic performance of the copebot. We demonstrate the utility of our design by building a prototype that rapidly jumps out of the water, accurately lands on its feet on a small platform, wirelessly transmits data, and jumps back into the water. Our copebot design opens the way toward high-performance biomimetic robots for multifunctional applications.


翻译:设计并制造了一种燃气驱动的水下软机器人,“copebot”,它能像桡脚类动物一样,精准地在单次曲线跳跃中到达附近的预定位置。由于改进的推力传输单元,导致了一个很大的初始加速峰值(850个身长*秒的平方),因此,Copebot比以前的燃气驱动水下软机器人快8倍,同时能够在跳跃过程中完成完整的360度旋转。通过测试Copebot产生的推力来定量确定其执行性能,并进行参数研究,以研究输入参数对Copebot的运动性能的影响力。我们通过构建一个能瞬间跳出水面,准确地落在小平台上,无线传送数据并跳回水中的原型,展示了我们设计的实用性。我们的copebot设计为实现多功能应用的高性能仿生机器人铺平了道路。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年6月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员