The performance of modern software systems is critically dependent on their complex configuration options. Building accurate performance models to navigate this vast space requires effective sampling strategies, yet existing methods often struggle with multi-objective optimization and cannot leverage semantic information from documentation. The recent success of Large Language Models (LLMs) motivates the central question of this work: Can LLMs serve as effective samplers for multi-objective performance modeling? To explore this, we present a comprehensive empirical study investigating the capabilities and characteristics of LLM-driven sampling. We design and implement LLM4Perf, a feedback-based framework, and use it to systematically evaluate the LLM-guided sampling process across four highly configurable, real-world systems. Our study reveals that the LLM-guided approach outperforms traditional baselines in most cases. Quantitatively, LLM4Perf achieves the best performance in nearly 68.8% (77 out of 112) of all evaluation scenarios, demonstrating its superior effectiveness. We find this effectiveness stems from the LLM's dual capabilities of configuration space pruning and feedback-driven strategy refinement. The effectiveness of this pruning is further validated by the fact that it also improves the performance of the baseline methods in nearly 91.5% (410 out of 448) of cases. Furthermore, we show how the LLM choices for each component and hyperparameters within LLM4Perf affect its effectiveness. Overall, this paper provides strong evidence for the effectiveness of LLMs in performance engineering and offers concrete insights into the mechanisms that drive their success.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员