We give a new interpretation of basic belief assignment transformation into probability distribution, and use directed acyclic network called belief evolution network to describe the causality between the focal elements of a BBA. On this basis, a new probability transformations method called full causality probability transformation is proposed, and this method is superior to all previous method after verification from the process and the result. In addition, using this method combined with disjunctive combination rule, we propose a new probabilistic combination rule called disjunctive transformation combination rule. It has an excellent ability to merge conflicts and an interesting pseudo-Matthew effect, which offer a new idea to information fusion besides the combination rule of Dempster.


翻译:我们对基本信仰分配转换为概率分布进行新的解释,并使用称为信仰进化网络的定向循环网络来描述BBA核心要素之间的因果关系。在此基础上,提出了一种称为完全因果关系概率转换的新概率转换方法,这种方法优于从过程和结果中核查后以前采用的所有方法。此外,我们使用这种方法加上脱影组合规则,提出了一种新的概率组合规则,称为分影转换组合规则。它极有可能合并冲突并产生有趣的假马休效应,除了Dempster的组合规则之外,这为信息融合提供了新的想法。

0
下载
关闭预览

相关内容

和积网络综述论文,Sum-product networks: A survey,24页pdf
专知会员服务
23+阅读 · 2020年4月3日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
5+阅读 · 2021年2月15日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
7+阅读 · 2019年6月20日
Arxiv
5+阅读 · 2015年3月1日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员