Differentially private noise mechanisms commonly use symmetric noise distributions. This is attractive both for achieving the differential privacy definition, and for unbiased expectations in the noised answers. However, there are contexts in which a noisy answer only has utility if it is conservative, that is, has known-signed error, which we call a padded answer. Seemingly, it is paradoxical to satisfy the DP definition with one-sided error, but we show how it is possible to bury the paradox into approximate DP's delta parameter. We develop a few mechanisms for one-sided padding mechanisms that always give conservative answers, but still achieve approximate differential privacy. We show how these mechanisms can be applied in a few select areas including making the cardinalities of set intersections and unions revealed in Private Set Intersection protocols differential private and enabling multiparty computation protocols to compute on sparse data which has its exact sizes made differential private rather than performing a fully oblivious more expensive computation.


翻译:不同的私人噪声机制通常使用对称噪音分布法。 这对于实现差异隐私定义和对节点答案的公正期望都是有吸引力的。 但是,在有些情况下,如果答案是保守的, 即有已知的签名错误, 也就是我们称之为附加的错误, 杂音回答才有用。 似乎用单向错误来满足DP定义是自相矛盾的, 但我们展示了将悖论埋入DP的近似 delta 参数的可能性。 我们为单向倾斜机制开发了几个机制,这些机制总是提供保守的答案,但仍能达到近似差异的隐私。 我们展示了这些机制如何在少数选定的领域应用, 包括将设定的交叉点和私自设区间协议中披露的联盟的基点区分私人和多党计算协议, 以其精确大小使差异成为私人差异而非完全模糊的更昂贵计算方法的稀少数据进行计算。

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年4月10日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
专知会员服务
25+阅读 · 2020年2月15日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2019年4月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月3日
VIP会员
相关VIP内容
专知会员服务
22+阅读 · 2021年4月10日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
专知会员服务
25+阅读 · 2020年2月15日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
3+阅读 · 2019年4月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员