Recently, coded distributed computing (CDC), with advantages in intensive computation and reduced latency, has attracted a lot of research interest for edge computing, in particular, IoT applications, including IoT data pre-processing and data analytics. Nevertheless, it can be challenging for edge infrastructure providers (EIPs) with limited edge resources to support IoT applications performed in a CDC approach in edge networks, given the additional computational resources required by CDC. In this paper, we propose coded edge federation, in which different EIPs collaboratively provide edge resources for CDC tasks. To study the Nash equilibrium, when no EIP has an incentive to unilaterally alter its decision on edge resource allocation, we model the coded edge federation based on evolutionary game theory. Since the replicator dynamics of the classical evolutionary game are unable to model economic-aware EIPs which memorize past decisions and utilities, we propose fractional replicator dynamics with a power-law fading memory via Caputo fractional derivatives. The proposed dynamics allow us to study a broad spectrum of EIP dynamic behaviors, such as EIP sensitivity and aggressiveness in strategy adaptation, which classical replicator dynamics cannot capture. Theoretical analysis and extensive numerical results justify the existence, uniqueness, and stability of the equilibrium in the fractional evolutionary game. The influence of the content and the length of the memory on the rate of convergence is also investigated.


翻译:最近,代码分布式计算(CDC)在密集计算和降低延迟度方面具有优势,吸引了大量对边缘计算的研究兴趣,特别是IoT应用,包括IoT数据预处理和数据分析。然而,鉴于CDC需要额外的计算资源,对于支持在边缘网络中以CDC方法实施的IoT应用的边缘基础设施供应商(EIPs)来说,它可能具有挑战性,因为CDC需要额外的计算资源。在本文中,我们提议了分解边缘联合会,其中不同的 EIPs协作为CDC任务提供边缘资源。研究纳什平衡,当EIP没有动力单方面改变其边缘资源分配决定时,我们根据进化游戏理论来模拟编码边缘联合会。由于经典进化游戏的反向动力无法模拟经济认知性EIP应用程序应用程序在边缘网络中应用,因此我们建议通过Caputo分数衍生物来减少电力法记忆的分辨分数体动态。拟议的动态使我们能够研究广泛的EIP动态行为,例如EIP感敏度和进化型资源分配式游戏的趋同性策略的弹性分析,因此无法理解进化和进化的进化的进化战略的进化程度。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
39+阅读 · 2020年9月6日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Arxiv
0+阅读 · 2021年11月17日
Arxiv
0+阅读 · 2021年11月17日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Top
微信扫码咨询专知VIP会员