Symbolic music datasets are important for music information retrieval and musical analysis. However, there is a lack of large-scale symbolic datasets for classical piano music. In this article, we create a GiantMIDI-Piano (GP) dataset containing 38,700,838 transcribed notes and 10,855 unique solo piano works composed by 2,786 composers. We extract the names of music works and the names of composers from the International Music Score Library Project (IMSLP). We search and download their corresponding audio recordings from the internet. We further create a curated subset containing 7,236 works composed by 1,787 composers by constraining the titles of downloaded audio recordings containing the surnames of composers. We apply a convolutional neural network to detect solo piano works. Then, we transcribe those solo piano recordings into Musical Instrument Digital Interface (MIDI) files using a high-resolution piano transcription system. Each transcribed MIDI file contains the onset, offset, pitch, and velocity attributes of piano notes and pedals. GiantMIDI-Piano includes 90% live performance MIDI files and 10\% sequence input MIDI files. We analyse the statistics of GiantMIDI-Piano and show pitch class, interval, trichord, and tetrachord frequencies of six composers from different eras to show that GiantMIDI-Piano can be used for musical analysis. We evaluate the quality of GiantMIDI-Piano in terms of solo piano detection F1 scores, metadata accuracy, and transcription error rates. We release the source code for acquiring the GiantMIDI-Piano dataset at https://github.com/bytedance/GiantMIDI-Piano
翻译:古典钢琴音乐缺少大型象征性数据集。 在文章中, 我们创建了巨型MIDI- Piano (GP) 数据集, 包含38 700 838个曲解笔记和10 855个由2 786个作曲家组成的独有独有的独有的独奏钢琴作品。 我们从国际音乐评分图书馆项目( IMSLP) 提取音乐作品的名称和作曲家的名称。 我们搜索和下载它们从互联网上的相应音频记录。 我们还创建了一个由1 787 作曲家组成的7 236个曲子集, 通过限制含有作曲家姓氏的下载录音标题。 我们应用一个进化神经神经网络来检测独奏钢琴作品。 然后, 我们将这些索声录音录输入到音乐仪器数字界面( MIDI) 文件中。 每一个作曲解的MIDI/ 音序中, 我们从 GiMI- Pial 的音序中, 解读取了90 % 。