Recent deep face hallucination methods show stunning performance in super-resolving severely degraded facial images, even surpassing human ability. However, these algorithms are mainly evaluated on non-public synthetic datasets. It is thus unclear how these algorithms perform on public face hallucination datasets. Meanwhile, most of the existing datasets do not well consider the distribution of races, which makes face hallucination methods trained on these datasets biased toward some specific races. To address the above two problems, in this paper, we build a public Ethnically Diverse Face dataset, EDFace-Celeb-1M, and design a benchmark task for face hallucination. Our dataset includes 1.7 million photos that cover different countries, with balanced race composition. To the best of our knowledge, it is the largest and publicly available face hallucination dataset in the wild. Associated with this dataset, this paper also contributes various evaluation protocols and provides comprehensive analysis to benchmark the existing state-of-the-art methods. The benchmark evaluations demonstrate the performance and limitations of state-of-the-art algorithms.
翻译:最近深层面部幻觉方法在超解严重退化的面部图像方面表现出惊人的性能,甚至超过了人的能力。然而,这些算法主要是在非公开的合成数据集上评估的。因此不清楚这些算法是如何在公众面部幻觉数据集上表现的。与此同时,大多数现有数据集没有很好地考虑种族分布,这使得在这些数据集上培训的面部幻觉方法偏向于某些特定种族。为了解决上述两个问题,我们在本文件中建立了一个公开的“种族多样性面部数据集 ”, EDFace-Celeb-1M, 并设计了一个面部幻觉的基准任务。我们的数据集包括170万张覆盖不同国家的照片,具有均衡的种族构成。据我们所知,它是野生中最大和公开的面部幻觉数据集。与这一数据集相关,本文还提供各种评估协议,并提供综合分析,以衡量现有最新方法的基准。基准评估显示了最新算法的绩效和局限性。