The recent introduction of thermodynamic integration techniques has provided a new framework for understanding and improving variational inference (VI). In this work, we present a careful analysis of the thermodynamic variational objective (TVO), bridging the gap between existing variational objectives and shedding new insights to advance the field. In particular, we elucidate how the TVO naturally connects the three key variational schemes, namely the importance-weighted VI, Renyi-VI, and MCMC-VI, which subsumes most VI objectives employed in practice. To explain the performance gap between theory and practice, we reveal how the pathological geometry of thermodynamic curves negatively affects TVO. By generalizing the integration path from the geometric mean to the weighted Holder mean, we extend the theory of TVO and identify new opportunities for improving VI. This motivates our new VI objectives, named the Holder bounds, which flatten the thermodynamic curves and promise to achieve a one-step approximation of the exact marginal log-likelihood. A comprehensive discussion on the choices of numerical estimators is provided. We present strong empirical evidence on both synthetic and real-world datasets to support our claims.
翻译:最近引入的热力集成技术为理解和改进变异推导提供了新的框架(VI)。 在这项工作中,我们仔细分析了热力动力学变异目标(TVO),缩小了现有变异目标之间的差距,并提出了推进球场的新见解。特别是,我们阐述了TVO如何自然地将三个关键的变异方案(即重要加权六、Renyi-VI和MCMC-VI)连接起来,这三个方案是把实践中应用的六大目标分解起来。为了解释理论与实践之间的性能差距,我们揭示了热力曲线的病理几何学几何对TVO产生的负面影响。通过将整合路径从几何平均值概括到加权控股值,我们扩展了TVO理论,并找出了改进六等的新机会。这激励了我们新的六大目标,即控制线,即压低热力曲线,并承诺实现准确的边际日志相似度的一步近。我们提供了关于数字估计器选择的全面讨论。我们为合成和真实世界数据索赔提供了强有力的实证证据。