We present the first complete axiomatisation for quantifier-free separation logic. The logic is equipped with the standard concrete heaplet semantics and the proof system has no external feature such as nominals/labels. It is not possible to rely completely on proof systems for Boolean BI as the concrete semantics needs to be taken into account. Therefore, we present the first internal Hilbert-style axiomatisation for quantifier-free separation logic. The calculus is divided in three parts: the axiomatisation of core formulae where Boolean combinations of core formulae capture the expressivity of the whole logic, axioms and inference rules to simulate a bottom-up elimination of separating connectives, and finally structural axioms and inference rules from propositional calculus and Boolean BI with the magic wand.
翻译:我们提出了第一个完整的非量化的分离逻辑的完整分解。 逻辑配有标准的混凝土堆式语义学, 证明系统没有外在特征, 如标语/ 标签等。 无法完全依赖 Buleean BI 的验证系统, 因为混凝土语义需要加以考虑 。 因此, 我们提出了第一个内部的Hilbert 式分解法, 即无量化的分离逻辑 。 微积分分为三部分: 核心公式的Bolee 组合的分解核心公式的分解, 以体现整个逻辑的表达性、 exixom 和推论规则, 以模拟自下而上地消除分离的连接, 以及最终结构的轴和推论规则, 以图式的微积分法和用魔杖的Boolean BI 的推论。