In this paper, we seek a natural problem and a natural distribution of instances such that any $O(n^{c-\epsilon})$-time algorithm fails to solve most instances drawn from the distribution, while the problem admits an $n^{c+o(1)}$-time algorithm that correctly solves all instances. Specifically, we consider the $K_{a,b}$ counting problem in a random bipartite graph, where $K_{a,b}$ is a complete bipartite graph for constants $a$ and $b$. We proved that the $K_{a,b}$ counting problem admits an $n^{a+o(1)}$-time algorithm if $a\geq 8$, while any $n^{a-\epsilon}$-time algorithm fails to solve it even on random bipartite graph for any constant $\epsilon>0$ under the Strong Exponential Time Hypotheis. Then, we amplify the hardness of this problem using the direct product theorem and Yao's XOR lemma by presenting a general framework of hardness amplification in the setting of fine-grained complexity.
翻译:在本文中,我们寻求的是自然问题和自然分配的情况,以至于任何美元(n ⁇ c-epsilon}) 美元-时间算法都无法解决从分配中得出的多数情况,而问题则承认美元(n ⁇ c+o(1)) 美元-时间算法可以正确解决所有情况。具体地说,我们在一个随机的双方图中考虑美元(k ⁇ a,b}$) 的计算问题,在这个图中,美元(K ⁇ a,b} 美元是美元和美元等常数的完整的双方图。我们证明,美元(K ⁇ a,b} 美元) 的计算问题承认了美元(n ⁇ a+o(1)) 美元-时间算法,如果是美元(geq) 8美元,而任何美元-a-epslon}-时间算法都无法在任何恒定的 $(eepsilon) 时间曲目下随机的双方图上解决这个问题。然后,我们用直接的产品标准和Yao's Xomma 的精确度框架来放大这一问题的难度。