We propose a multiscale spectral generalized finite element method (MS-GFEM) for discontinuous Galerkin (DG) discretizations. The method builds local approximations on overlapping subdomains as the sum of a local source solution and a correction from an optimal spectral coarse space, which is obtained from a generalized eigenproblem. The global solution is then assembled via a partition of unity. We prove nearly exponential decay of the approximation error for second-order elliptic problems discretized with a weighted symmetric interior-penalty DG scheme.
翻译:本文提出了一种用于间断伽辽金离散化的多尺度谱广义有限元方法。该方法通过在重叠子域上构建局部近似解,将其表示为局部源解与最优谱粗空间修正项之和,其中谱粗空间通过求解广义特征值问题获得。随后通过单位分解组装全局解。针对采用加权对称内部罚函数间断伽辽金格式离散的二阶椭圆问题,我们证明了该方法具有近指数级的近似误差衰减特性。