In this paper, we address the fundamental problem of line spectral estimation in a Bayesian framework. We target model order and parameter estimation via variational inference in a probabilistic model in which the frequencies are continuous-valued, i.e., not restricted to a grid; and the coefficients are governed by a Bernoulli-Gaussian prior model turning model order selection into binary sequence detection. Unlike earlier works which retain only point estimates of the frequencies, we undertake a more complete Bayesian treatment by estimating the posterior probability density functions (pdfs) of the frequencies and computing expectations over them. Thus, we additionally capture and operate with the uncertainty of the frequency estimates. Aiming to maximize the model evidence, variational optimization provides analytic approximations of the posterior pdfs and also gives estimates of the additional parameters. We propose an accurate representation of the pdfs of the frequencies by mixtures of von Mises pdfs, which yields closed-form expectations. We define the algorithm VALSE in which the estimates of the pdfs and parameters are iteratively updated. VALSE is a gridless, convergent method, does not require parameter tuning, can easily include prior knowledge about the frequencies and provides approximate posterior pdfs based on which the uncertainty in line spectral estimation can be quantified. Simulation results show that accounting for the uncertainty of frequency estimates, rather than computing just point estimates, significantly improves the performance. The performance of VALSE is superior to that of state-of-the-art methods and closely approaches the Cram\'er-Rao bound computed for the true model order.
翻译:在本文中,我们处理贝叶西亚框架中线光谱估计的根本问题。 我们通过对频率的后概率密度函数(pdfs)进行更完整的巴伊西亚处理。 因此, 我们以概率估算不确定性的概率模型, 将模型订单和参数估算作为目标。 为了尽量扩大模型证据, 变色优化提供了对数参数的分析近似值, 并提供了对额外参数的估算。 我们建议精确地显示使用von Mises pdf 混合物对频率频率频率频率进行精确估测的pdfs。 我们通过估算频率的后概率密度函数(pdfs)和对频率的预期进行更完整的巴伊西亚处理。 因此, 我们以频率估计的不确定性的不确定性来捕获和操作。 为了尽量扩大模型证据, 变色优化提供了对数变量的分析性近似近似近似近似值, 用于精确的精确度估算值, 用于精确度的精确度, 精确度的计算方法可以精确地显示精确度, 精确度的精确性能反映精确度, 精确度的精确度是精确度, 。