We present SimpleMG, a new, provably correct design methodology for runtime assurance of microgrids (MGs) with neural controllers. Our approach is centered around the Neural Simplex Architecture, which in turn is based on Sha et al.'s Simplex Control Architecture. Reinforcement Learning is used to synthesize high-performance neural controllers for MGs. Barrier Certificates are used to establish SimpleMG's runtime-assurance guarantees. We present a novel method to derive the condition for switching from the unverified neural controller to the verified-safe baseline controller, and we prove that the method is correct. We conduct an extensive experimental evaluation of SimpleMG using RTDS, a high-fidelity, real-time simulation environment for power systems, on a realistic model of a microgrid comprising three distributed energy resources (battery, photovoltaic, and diesel generator). Our experiments confirm that SimpleMG can be used to develop high-performance neural controllers for complex microgrids while assuring runtime safety, even in the presence of adversarial input attacks on the neural controller. Our experiments also demonstrate the benefits of online retraining of the neural controller while the baseline controller is in control
翻译:我们提出了使用神经控制器对微电网(MGs)进行运行保证的新的、可辨别的正确设计方法SimmerMG(MGs),这是使用神经控制器(MGs)进行运行保证的新方法。我们的方法以神经简单结构为中心,而神经简单结构又以Sha等人的简单控制结构为基础。强化学习用于合成MGs的高性能神经控制器。屏障证书用于建立简单MG的运行时间保证。我们提出了一个新颖的方法,从未经核查的神经控制器向经过核查的安全基线控制器转换的条件,我们证明这一方法是正确的。我们用RTDS(RTDS)对简单MG进行了广泛的实验性评价,这是对电力系统的高不感知度、实时模拟环境,它基于由三种分布式能源(电池、光电和柴油发电机)组成的一个现实的微格网络模型。我们的实验证实,简单MG可以用来为复杂的微电离子开发高性神经控制器,同时保证运行安全,即使在对神经控制器进行对抗性输入攻击的情况下,我们的实验还展示了对神经控制器进行在线重新进行控制的好处,同时进行基线控制。