In this paper, we first introduce the multilayer random dot product graph (MRDPG) model, which can be seen as an extension of the random dot product graph model to multilayer networks. The MRDPG model is convenient for incorporating nodes' latent positions when understanding connectivity. By modelling a multilayer network as an MRDPG, we further deploy a tensor-based method and demonstrate its superiority over the state-of-the-art methods. We then move from a static to a dynamic MRDPG and are concerned with online change point detection problems. At every time point, we observe a realisation from an $L$-layered MRDPG. Across layers, we assume shared common node sets and latent positions, but allow for different connectivity matrices. In this paper we unfold a comprehensive picture concerning a range of problems. For both fixed and random latent position cases, we propose efficient online change point detection algorithms, minimising the delay in detection while controlling the false alarms. Notably, in the random latent position case, we devise a novel nonparametric change point detection algorithm with a kernel estimator in its core, allowing for the case when the density does not exist, accommodating stochastic block models as special cases. Our theoretical findings are supported by extensive numerical experiments, with the code available online https://github.com/MountLee/MRDPG.
翻译:暂无翻译