The wastage of perishable items has led to significant health and economic crises, increasing business uncertainty and fluctuating customer demand. This issue is worsened by online food delivery services, where frequent and unpredictable orders create inefficiencies in supply chain management, contributing to the bullwhip effect. This effect results in stockouts, excess inventory, and inefficiencies. Accurate demand forecasting helps stabilize inventory, optimize supplier orders, and reduce waste. This paper presents a Third-Party Logistics (3PL) supply chain model involving restaurants, online food apps, and customers, along with a deep learning-based demand forecasting model using a two-phase Long Short-Term Memory (LSTM) network. Phase one, intra-day forecasting, captures short-term variations, while phase two, daily forecasting, predicts overall demand. A two-year dataset from January 2023 to January 2025 from Swiggy and Zomato is used, employing discrete event simulation and grid search for optimal LSTM hyperparameters. The proposed method is evaluated using RMSE, MAE, and R-squared score, with R-squared as the primary accuracy measure. Phase one achieves an R-squared score of 0.69 for Zomato and 0.71 for Swiggy with a training time of 12 minutes, while phase two improves to 0.88 for Zomato and 0.90 for Swiggy with a training time of 8 minutes. To mitigate demand fluctuations, restaurant inventory is dynamically managed using the newsvendor model, adjusted based on forecasted demand. The proposed framework significantly reduces the bullwhip effect, improving forecasting accuracy and supply chain efficiency. For phase one, supply chain instability decreases from 2.61 to 0.96, and for phase two, from 2.19 to 0.80. This demonstrates the model's effectiveness in minimizing food waste and maintaining optimal restaurant inventory levels.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员