We consider resultant-based methods for elimination of indeterminates of Ore polynomial systems in Ore algebra. We start with defining the concept of resultant for bivariate Ore polynomials then compute it by the Dieudonne determinant of the polynomial coefficients. Additionally, we apply noncommutative versions of evaluation and interpolation techniques to the computation process to improve the efficiency of the method. The implementation of the algorithms will be performed in Maple to evaluate the performance of the approaches.
翻译:我们考虑以结果为基础的方法来消除Ore代数中的Ore多元系统不确定现象。我们首先界定二变多偶现象的产物概念,然后用多偶系数的Dieudonne决定因素进行计算。此外,我们用非混合的评价和内插技术来计算过程,以提高方法的效率。将在Maple实施算法,以评价方法的绩效。