In the field of materials science and manufacturing, a vast amount of heterogeneous data exists, encompassing measurement and simulation data, machine data, publications, and more. This data serves as the bedrock of valuable knowledge that can be leveraged for various engineering applications. However, efficiently storing and handling such diverse data remain significantly challenging, often due to the lack of standardization and integration across different organizational units. Addressing these issues is crucial for fully utilizing the potential of data-driven approaches in these fields. In this paper, we present a novel technology stack named Dataspace Management System (DSMS) for powering dataspace solutions. The core of DSMS lies on its distinctive knowledge management approach tuned to meet the specific demands of the materials science and manufacturing domain, all while adhering to the FAIR principles. This includes data integration, linkage, exploration, visualization, processing, and enrichment, in order to support engineers in decision-making and in solving design and optimization problems. We provide an architectural overview and describe the core components of DSMS. Additionally, we demonstrate the applicability of DSMS to typical data processing tasks in materials science through use cases from two research projects, namely StahlDigital and KupferDigital, both part of the German MaterialDigital initiative.
翻译:暂无翻译