Quantum Bell nonlocality allows for the design of protocols that amplify the randomness of public and arbitrarily biased Santha-Vazirani sources, a classically impossible task. Information-theoretical security in these protocols is certified in a device-independent manner, i.e. solely from the observed nonlocal statistics and without any assumption about the inner-workings of the intervening devices. On the other hand, if one is willing to trust on a complete quantum-mechanical description of a protocol's devices, the elementary scheme in which a qubit is alternatively measured in a pair of mutually unbiased bases is, straightforwardly, a protocol for randomness amplification. In this work, we study the unexplored middle ground. We prove that full randomness amplification can be achieved without requiring entanglement or a complete characterization of the intervening quantum states and measurements. Based on the energy-bounded framework introduced in [Van Himbeeck et al., Quantum 1, 33 (2017)], our prepare-and-measure protocol is able to amplify the randomness of any public Santha-Vazirani source, requiring the smallest number of inputs and outcomes possible and being secure against quantum adversaries.
翻译:Qantum Bell的不位置性允许设计扩大公共和任意偏差的Santha-Vazirani来源随机性的规程,这是一项典型的不可能的任务。这些规程中的信息理论安全以独立装置的方式得到认证,即仅从观测的非本地统计数字中进行认证,不考虑干预装置的内部工作。另一方面,如果有人愿意信任对规程装置的完整量子机械性描述,那么,在对一对不偏倚的基底中测量qubit的基本规程直截了当地是随机振荡的规程。在这项工作中,我们研究了未探索的中间地。我们证明,完全随机振荡是可以实现的,而不需要纠缠或完整地描述干扰量子状态和测量。根据[Van Himbeeck 等人, Quantum 1, 33 (2017) 中引入的节能框架,我们准备和计量规程能够增强任何公共Santha-Vazirnial 的随机性,要求最小的量态和最小的量态结果。