Neuromorphology is crucial to identifying neuronal subtypes and understanding learning. It is also implicated in neurological disease. However, standard morphological analysis focuses on macroscopic features such as branching frequency and connectivity between regions, and often neglects the internal geometry of neurons. In this work, we treat neuron trace points as a sampling of differentiable curves and fit them with a set of branching B-splines. We designed our representation with the Frenet-Serret formulas from differential geometry in mind. The Frenet-Serret formulas completely characterize smooth curves, and involve two parameters, curvature and torsion. Our representation makes it possible to compute these parameters from neuron traces in closed form. These parameters are defined continuously along the curve, in contrast to other parameters like tortuosity which depend on start and end points. We applied our method to a dataset of cortical projection neurons traced in two mouse brains, and found that the parameters are distributed differently between primary, collateral, and terminal axon branches, thus quantifying geometric differences between different components of an axonal arbor. The results agreed in both brains, further validating our representation. The code used in this work can be readily applied to neuron traces in SWC format and is available in our open-source Python package brainlit: http://brainlit.neurodata.io/.


翻译:神经形态学对于识别神经亚型和理解学习至关重要。 它也与神经疾病有关。 但是, 标准形态分析侧重于宏观特征, 如分流频率和区域间连接, 往往忽视神经元的内部几何学。 在这项工作中, 我们将神经痕量点作为不同曲线的抽样处理, 并把它们与一组分流B- spline 相匹配。 我们用不同几何思维的Frenet- Serret 公式设计了我们的代表性。 Frenet- Serret 公式完全体现了平稳曲线的特点, 并包含两个参数, 包括曲线和torsion。 我们的表示方式使得这些参数能够从封闭的神经痕迹中解析这些参数。 这些参数在曲线上被持续定义, 与取决于起始点和终点的图象等其它参数相对比。 我们用我们的方法在两个鼠标大脑中追踪到的骨质预测神经神经元的数据集, 并且发现参数在原始、 附属和终端的xon 分支之间分布有不同的参数, 因此, 我们的直径数据序列中所使用的直径分析结果可以被应用到一个正常的直径。 。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
生物探索
3+阅读 · 2018年2月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月29日
Arxiv
9+阅读 · 2020年10月29日
Visualizing and Measuring the Geometry of BERT
Arxiv
7+阅读 · 2019年10月28日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
生物探索
3+阅读 · 2018年2月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员