Knowledge-grounded dialog systems need to incorporate smooth transitions among knowledge selected for generating responses, to ensure that dialog flows naturally. For document-grounded dialog systems, the inter- and intra-document knowledge relations can be used to model such conversational flows. We develop a novel Multi-Document Co-Referential Graph (Coref-MDG) to effectively capture the inter-document relationships based on commonsense and similarity and the intra-document co-referential structures of knowledge segments within the grounding documents. We propose CorefDiffs, a Co-referential and Differential flow management method, to linearize the static Coref-MDG into conversational sequence logic. CorefDiffs performs knowledge selection by accounting for contextual graph structures and the knowledge difference sequences. CorefDiffs significantly outperforms the state-of-the-art by 9.5\%, 7.4\%, and 8.2\% on three public benchmarks. This demonstrates that the effective modeling of co-reference and knowledge difference for dialog flows are critical for transitions in document-grounded conversation
翻译:基于知识的对话系统需要纳入为产生回应而选择的知识之间的平稳过渡,以确保对话的自然流动。对于基于文件的对话系统,可以使用文件之间的知识关系和文件内部的知识关系来模拟这种对话流。我们开发了一部新颖的多文档共同参考图(Coref-MDG),以有效捕捉基于常识和相似性以及文件内部知识部分在基础文件内部共同优惠结构的文档间关系。我们提议了CorfDiffs,一种共同偏向和差异流管理方法,将静态核心-千年发展目标线性线性地化为对等序列逻辑。CorefDiffs通过计算背景图表结构和知识差异序列来进行知识选择。CorefDiffs在三个公共基准上大大超越了目前的情况,即9.5 ⁇ 、7.4 ⁇ 和8.2 ⁇ 。这说明,对对话流的共同参照和知识差异的有效建模对于文件基础对话的过渡至关重要。