We present a Hamilton cycle in the $k$-sided pancake network and four combinatorial algorithms to traverse the cycle. The network's vertices are coloured permutations $\pi = p_1p_2\cdots p_n$, where each $p_i$ has an associated colour in $\{0,1,\ldots, k{-}1\}$. There is a directed edge $(\pi_1,\pi_2)$ if $\pi_2$ can be obtained from $\pi_1$ by a "flip" of length $j$, which reverses the first $j$ elements and increments their colour modulo $k$. Our particular cycle is created using a greedy min-flip strategy, and the average flip length of the edges we use is bounded by a constant.
翻译:我们在 $k$ side pancake 网络中展示了汉密尔顿周期, 以及四个组合算法来绕过周期。 网络的顶端是彩色的排列 $\ p = p_ 1p_ 2\ cdots p_ n$, 其中每美元都有相应的颜色 $0, 1,\ ldots, k{}1美元。 如果 $\ pi_ 1,\ pi_ 2 美元能够从 $\ pi_ 1 美元获得 $ 1 美元 的“ 翻转 ” 长度 $ j 美元, 折叠成第一个 $j 元元素, 递增其颜色 modulo $ k$ 。 我们的特殊周期是使用贪婪的微滑策略创建的, 我们使用的边缘的平均翻动长度由恒定值捆绑在一起 。