Owing to human labor shortages, the automation of labor-intensive manual waste-sorting is needed. The goal of automating waste-sorting is to replace the human role of robust detection and agile manipulation of waste items with robots. To achieve this, we propose three methods. First, we provide a combined manipulation method using graspless push-and-drop and pick-and-release manipulation. Second, we provide a robotic system that can automatically collect object images to quickly train a deep neural-network model. Third, we provide a method to mitigate the differences in the appearance of target objects from two scenes: one for dataset collection and the other for waste sorting in a recycling factory. If differences exist, the performance of a trained waste detector may decrease. We address differences in illumination and background by applying object scaling, histogram matching with histogram equalization, and background synthesis to the source target-object images. Via experiments in an indoor experimental workplace for waste-sorting, we confirm that the proposed methods enable quick collection of the training image sets for three classes of waste items (i.e., aluminum can, glass bottle, and plastic bottle) and detection with higher performance than the methods that do not consider the differences. We also confirm that the proposed method enables the robot quickly manipulate the objects.
翻译:由于人力短缺,需要将劳动密集型手工废物分类自动化。废物分类自动化的目标是用机器人取代对废物物品进行强力检测和敏捷处理的人类作用。为了实现这一点,我们提出三种方法。首先,我们提供一种混合操纵方法,使用不掌握的推、投、取、放等手段。第二,我们提供一种机器人系统,可以自动收集物体图像,以快速培训深神经网络模型。第三,我们提供一种方法,减少两个场景目标物体外观的差异:一个用于数据收集,另一个用于回收工厂的废物分类。如果存在差异,经过训练的废物探测器的性能可能会降低。我们通过应用物体缩放、直方图与直方平和取、取、放等组合,解决照明和背景差异。在室内实验工作场所进行废物分类实验,我们确认拟议方法有助于快速收集三类废物物品的培训图集(即用于数据收集,另一个用于在回收厂进行废物分类。如果存在差异,则经过训练的废物探测器的性能会减少。我们通过应用物体的缩放比例、直方图和背景合成方法,我们也可以快速地确认玻璃、瓶和塑料的变换方法。