The Hosmer-Lemeshow (HL) test is a commonly used global goodness-of-fit (GOF) test that assesses the quality of the overall fit of a logistic regression model. In this paper, we give results from simulations showing that the type 1 error rate (and hence power) of the HL test decreases as model complexity grows, provided that the sample size remains fixed and binary replicates are present in the data. We demonstrate that the generalized version of the HL test by Surjanovic et al. (2020) can offer some protection against this power loss. We conclude with a brief discussion explaining the behaviour of the HL test, along with some guidance on how to choose between the two tests.
翻译:Hosmer-Lemeshow (HL) 测试是一种常用的、用于评估物流回归模型总体适用性的质量的全球良好健康测试(GOF) 。 在本文中,我们给出了模拟结果,显示HL测试的1型误差率(以及因此产生的功率)随着模型复杂性的增加而下降,前提是样本大小保持不变,数据中存在二进式复制。我们证明Surjanovic等人(202020年)的HL测试的通用版本可以提供某种保护,防止这种电力损失。我们最后简要地讨论了HL测试的行为,并就如何在两种测试之间作出选择提供了一些指导。