In this work we study how to learn good algorithms for selecting reasoning steps in theorem proving. We explore this in the connection tableau calculus implemented by leanCoP where the partial tableau provides a clean and compact notion of a state to which a limited number of inferences can be applied. We start by incorporating a state-of-the-art learning algorithm -- a graph neural network (GNN) -- into the plCoP theorem prover. Then we use it to observe the system's behaviour in a reinforcement learning setting, i.e., when learning inference guidance from successful Monte-Carlo tree searches on many problems. Despite its better pattern matching capability, the GNN initially performs worse than a simpler previously used learning algorithm. We observe that the simpler algorithm is less confident, i.e., its recommendations have higher entropy. This leads us to explore how the entropy of the inference selection implemented via the neural network influences the proof search. This is related to research in human decision-making under uncertainty, and in particular the probability matching theory. Our main result shows that a proper entropy regularisation, i.e., training the GNN not to be overconfident, greatly improves plCoP's performance on a large mathematical corpus.


翻译:在这项工作中,我们研究如何学习良好的算法来选择理论证明中的推理步骤。 我们探索了这个方法, 在由LiightCoP执行的连接表表表的微积分中, 部分排列表提供了一种清洁和紧凑的概念, 即可以应用数量有限的推论。 我们从将最先进的学习算法 -- -- 图形神经网络(GNN) -- -- 纳入 PolCoP 理论证明过程开始。 然后我们用它来观察系统在强化学习环境中的行为, 即, 在学习成功蒙特卡洛树搜索许多问题的推论指南时。 尽管它具有更好的模式匹配能力, 但GNN最初的表现比以前使用的较简单的学习算法要差。 我们观察到, 更简单的算法比较不那么, 也就是, 其建议具有更高的灵敏度。 这导致我们探索通过神经网络所执行的推论选择的灵敏度是如何影响证据搜索的。 这与在不确定性下进行人类决策的研究有关, 特别是概率匹配理论有关。 我们的主要结果显示, 正常的运行率将大大超过磁。

0
下载
关闭预览

相关内容

自然语言处理现代方法,176页pdf
专知会员服务
267+阅读 · 2021年2月22日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
已删除
将门创投
5+阅读 · 2017年8月15日
Arxiv
0+阅读 · 2021年7月21日
A note on a PDE approach to option pricing under xVA
Arxiv
0+阅读 · 2021年7月20日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Arxiv
4+阅读 · 2018年12月3日
VIP会员
相关VIP内容
自然语言处理现代方法,176页pdf
专知会员服务
267+阅读 · 2021年2月22日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
已删除
将门创投
5+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员