Identifying clusters of similar elements in a set is a common task in data analysis. With the immense growth of data and physical limitations on single processor speed, it is necessary to find efficient parallel algorithms for clustering tasks. In this paper, we study the problem of correlation clustering in bounded arboricity graphs with respect to the Massively Parallel Computation (MPC) model. More specifically, we are given a complete graph where the edges are either positive or negative, indicating whether pairs of vertices are similar or dissimilar. The task is to partition the vertices into clusters with as few disagreements as possible. That is, we want to minimize the number of positive inter-cluster edges and negative intra-cluster edges. Consider an input graph $G$ on $n$ vertices such that the positive edges induce a $\lambda$-arboric graph. Our main result is a 3-approximation ($\textit{in expectation}$) algorithm to correlation clustering that runs in $\mathcal{O}(\log \lambda \cdot \textrm{poly}(\log \log n))$ MPC rounds in the $\textit{strongly sublinear memory regime}$. This is obtained by combining structural properties of correlation clustering on bounded arboricity graphs with the insights of Fischer and Noever (SODA '18) on randomized greedy MIS and the $\texttt{PIVOT}$ algorithm of Ailon, Charikar, and Newman (STOC '05). Combined with known graph matching algorithms, our structural property also implies an exact algorithm and algorithms with $\textit{worst case}$ $(1+\epsilon)$-approximation guarantees in the special case of forests, where $\lambda=1$.
翻译:在一组中识别相似元素组是一个常见的数据分析任务。 随着数据的巨大增长和单个处理器速度的物理限制, 有必要为分组任务找到高效的平行算法 。 在本文中, 我们研究在Massolious 平行计算模型( MPC) 中, 绑定 Airbority 图形中的关联组合问题 。 更具体地说, 我们得到一个完整的图表, 其边缘为正或负, 表明双向是相近还是相异 。 任务在于用尽可能少的分歧将顶端分隔成组。 也就是说, 我们想要将正数组间边缘和负组内部边缘的数量减少到最小值 。 考虑一个输入图 $G$, 这样, 正差会诱导出 $ lambda$- arboric 图形。 我们的主要结果是3- adcolgmation ( excial liversion { in $ directrial) 和以 $ more complia_ral exal 美元的正数( ral_ral) (O 美元) 美元) 美元和美元的正数的正数 和正数的正数的正数的正数, 和正数的正数的正数的正数的正数, 美元。