One core challenge in the development of automated vehicles is their capability to deal with a multitude of complex trafficscenarios with many, hard to predict traffic participants. As part of the iterative development process, it is necessary to detect criticalscenarios and generate knowledge from them to improve the highly automated driving (HAD) function. In order to tackle this challenge,numerous datasets have been released in the past years, which act as the basis for the development and testing of such algorithms.Nevertheless, the remaining challenges are to find relevant scenes, such as safety-critical corner cases, in these datasets and tounderstand them completely.Therefore, this paper presents a methodology to process and analyze naturalistic motion datasets in two ways: On the one hand, ourapproach maps scenes of the datasets to a generic semantic scene graph which allows for a high-level and objective analysis. Here,arbitrary criticality measures, e.g. TTC, RSS or SFF, can be set to automatically detect critical scenarios between traffic participants.On the other hand, the scenarios are recreated in a realistic virtual reality (VR) environment, which allows for a subjective close-upanalysis from multiple, interactive perspectives.
翻译:发展自动化车辆的一个核心挑战是,它们有能力处理众多复杂的交通情况,许多交通参与者都难以预测交通参与者。作为迭代发展进程的一部分,有必要发现临界情况,并从中获取知识,以改进高度自动化驾驶功能。为了应对这一挑战,过去几年中发布了无数数据集,作为发展和测试此类算法的基础。无论如何,剩下的挑战是找到相关场景,如这些数据集中的安全临界角落案例,并完全理解它们。因此,本文提出一种处理和分析自然运动数据集的方法,有两种方式:一方面,我们的方法将数据集的场景绘制成通用的静态场景图,以便进行高层次和客观的分析。在这里,任意的临界度措施,例如TC、RSS或SFF,可以用来自动检测交通参与者之间的关键场景。另一方面,假设情景是从现实的、虚拟的虚拟现实角度(R)重新构建出一个现实的、真实的、真实的虚拟环境。