This PhD thesis investigates the societal impact of machine learning (ML). ML increasingly informs consequential decisions and recommendations, significantly affecting many aspects of our lives. As these data-driven systems are often developed without explicit fairness considerations, they carry the risk of discriminatory effects. The contributions in this thesis enable more appropriate measurement of fairness in ML systems, systematic decomposition of ML systems to anticipate bias dynamics, and effective interventions that reduce algorithmic discrimination while maintaining system utility. I conclude by discussing ongoing challenges and future research directions as ML systems, including generative artificial intelligence, become increasingly integrated into society. This work offers a foundation for ensuring that ML's societal impact aligns with broader social values.


翻译:本博士学位论文研究了机器学习(ML)的社会影响。机器学习日益影响关键决策与推荐,显著作用于我们生活的诸多方面。由于这些数据驱动系统常在开发时未明确考虑公平性,它们存在产生歧视性效应的风险。本论文的贡献包括:实现对机器学习系统公平性的更恰当度量、对机器学习系统进行系统性分解以预测偏见动态、以及实施有效干预措施,在保持系统效用的同时减少算法歧视。最后,我讨论了随着机器学习系统(包括生成式人工智能)日益融入社会所面临的持续挑战与未来研究方向。本工作为确保机器学习的社会影响与更广泛的社会价值观相一致提供了基础。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2022年12月20日
Arxiv
10+阅读 · 2022年3月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员