In this note, we extend the Vandermonde with Arnoldi method recently advocated by P. D. Brubeck, Y. Nakatsukasa and L. N. Trefethen to dealing with the confluent Vandermonde matrix. To apply the Arnoldi process, it is critical to find a Krylov subspace which generates the column space of the confluent Vandermonde matrix. A theorem is established for such Krylov subspaces for any order derivatives. This enables us to compute the derivatives of high degree polynomials to high precision. It also makes many applications involving derivatives possible, as illustrated by numerical examples. We note that one of the approaches orthogonalizes only the function values and is equivalent to the formula given by P. D. Brubeck and L. N. Trefethen. The other approach orthogonalizes the Hermite data. About which approach is preferable to another, we made the comparison, and the result is problem dependent.
翻译:在本说明中,我们将P. D. Brubeck、Y. Nakatsukasa和L. N. Trefethen最近提倡的Vandermonde与Arnoldi方法的Vandermonde与Arnoldi方法扩展为处理 confluent Vandermonde 矩阵。应用Arnoldi 进程,关键是要找到一个可生成 confluent Vandermonde 矩阵列空间的 Krylov 子空间。为Krylov 子空间为任何定序衍生物设置了一种理论。这使我们能够将高度多元性衍生物的衍生物进行高精度的计算。它也使许多衍生物的应用成为可能,例如数字例子所说明的那样。我们注意到,一种方法或多位化方法仅将功能值与P. D. Brubeck 和 L. N. Trefethen给出的公式相等同。另一种方法将Hermite 数据形成一种理论。关于哪种方法比另一种方法更可取于另一种方法,我们进行了比较,结果取决于问题。