This paper considers the noisy group testing problem where among a large population of items some are defective. The goal is to identify all defective items by testing groups of items, with the minimum possible number of tests. The focus of this work is on the practical settings with a limited number of items rather than the asymptotic regime. In the current literature, belief propagation has been shown to be effective in recovering defective items from the test results. In this work, we adopt two variants of the belief propagation algorithm for the noisy group testing problem. These algorithms have been used successfully in the decoding of low-density parity-check codes. We perform an experimental study and using extensive simulations we show that these algorithms achieve higher success probability, lower false-negative, and false-positive rates compared to the traditional belief propagation algorithm. For instance, our results show that the proposed algorithms can reduce the false-negative rate by about $50\%$ (or more) when compared to the traditional BP algorithm, under the combinatorial model. Moreover, under the probabilistic model, this reduction in the false-negative rate increases to about $80\%$ for the tested cases.


翻译:本文考虑了在大量物品中存在缺陷的吵闹群体测试问题。 目标是通过测试物品组群来辨别所有有缺陷的物品, 并尽可能减少测试次数。 这项工作的重点是有限物品的实际设置, 而不是无药可救的系统。 在目前的文献中, 传播信仰被证明在从测试结果中回收有缺陷的物品方面是有效的。 在这项工作中, 我们采用了两种变式的噪音群体测试问题信仰传播算法。 这些算法已被成功地用于低密度对等检查编码的解码中。 我们进行了一项实验研究, 并使用了广泛的模拟, 我们显示这些算法的成功概率较高, 与传统的信仰传播算法相比, 假负率和假阳性率都较低。 例如, 我们的结果表明, 与传统的 BP 运算法模式下的传统计算法相比, 将错误负值率降低约50 $( 或 以上 ) 。 此外, 在概率模型下, 假负率率率率率率的下降率上升到约80$ 。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
19+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月13日
Arxiv
4+阅读 · 2020年3月19日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员