Distributed computing systems implement redundancy to reduce the job completion time and variability. Despite a large body of work about computing redundancy, the analytical performance evaluation of redundancy techniques in queuing systems is still an open problem. In this work, we take one step forward to analyze the performance of scheduling policies in systems with redundancy. In particular, we study the pattern of shared servers among replicas of different jobs. To this end, we employ combinatorics and graph theory and define and derive performance indicators using the statistics of the overlaps. We consider two classical nonadaptive scheduling policies: random and round-robin. We then propose a scheduling policy based on combinatorial block designs. Compared with conventional scheduling, the proposed scheduling improves the performance indicators. We study the expansion property of the graphs associated with round-robin and block design-based policies. It turns out the superior performance of the block design-based policy results from better expansion properties of its associated graph. As indicated by the performance indicators, the simulation results show that the block design-based policy outperforms random and round-robin scheduling in different scenarios. Specifically, it reduces the average waiting time in the queue to up to 25% compared to the random policy and up to 100% compared to the round-robin policy.
翻译:分布式计算系统实施冗余,以减少工作完成时间和变异性。 尽管在计算冗余方面做了大量工作, 对排队系统中冗余技术的分析性绩效评估仍然是一个未解决的问题。 在这项工作中,我们向前一步分析冗余系统中的排程政策的性能。 特别是, 我们研究不同工作复制品中共享服务器的模式。 为此, 我们使用组合和图表理论, 并使用重叠数据来定义和得出业绩指标。 我们考虑了两种经典的不适应性化排期政策: 随机和圆轮式。 我们然后提出基于组合区块设计的排程政策。 与常规排程相比, 拟议的排程将改进业绩指标。 我们研究与圆环形和块型设计型政策相关的图表的扩展属性。 我们研究基于组合设计的政策效果的优异性, 其相关图表的扩展性能。 正如业绩指标所示, 模拟结果显示, 基于块制设计的政策排程将随机和圆轮式排列的排程排程排成为随机和圆式。 具体地说, 将平均等候时间降为 25,, 将政策排排排为随机排至 。