We develop a systematic approach to measuring combinatorial innovation in the biomedical sciences based upon the comprehensive ontology of Medical Subject Headings (MeSH). This approach leverages an expert-defined knowledge ontology that features both breadth (27,875 MeSH analyzed across 25 million articles indexed by PubMed from 1902 onwards) and depth (we differentiate between Major and Minor MeSH terms to identify differences in the knowledge network representation constructed from primary research topics only). With this level of uniform resolution we differentiate between three different modes of innovation contributing to the combinatorial knowledge network: (i) conceptual innovation associated with the emergence of new concepts and entities (measured as the entry of new MeSH); and (ii) recombinant innovation, associated with the emergence of new combinations, which itself consists of two types: peripheral (i.e., combinations involving new knowledge) and core (combinations comprised of pre-existing knowledge only). Another relevant question we seek to address is whether examining triplet and quartet combinations, in addition to the more traditional dyadic or pairwise combinations, provide evidence of any new phenomena associated with higher-order combinations. Analysis of the size, growth, and coverage of combinatorial innovation yield results that are largely independent of the combination order, thereby suggesting that the common dyadic approach is sufficient to capture essential phenomena. Our main results are twofold: (a) despite the persistent addition of new MeSH terms, the network is densifying over time meaning that scholars are increasingly exploring and realizing the vast space of all knowledge combinations; and (b) conceptual innovation is increasingly concentrated within single research articles, a harbinger of the recent paradigm shift towards convergence science.


翻译:我们根据医学主题标题(MesHH)综合理论学,制定了一套系统的方法,以衡量生物医学科学的组合创新。 这种方法利用了一种专家界定的知识肿瘤学,既包括广度(27 875 MeSH),包括1902年以来由PubMed指数指数化的2 500万篇文章分析的广度(27 875 MeSH),也包括深度(我们区分主要和次要MesH的术语,以确定仅从初级研究专题构建的知识网络代表面的差异)。由于这种程度的统一解决方案,我们区分了有助于组合知识网络的三种不同的创新模式:(一) 与新概念和实体的出现相关的概念创新(以新的医学标题或对称的组合为新概念和实体的趋同(以日益集中的MeSH);以及(二) 重新组合创新,与新组合(即涉及新知识的组合)和核心(仅由原始知识构成的组合)。 我们寻求解决的另一个相关问题是,除了更传统的理论或双交的组合外, 任何新概念创新的组合的组合是持续、持续、不断增长的循环、不断演化和不断演化的主要结果的组合。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月9日
Arxiv
16+阅读 · 2021年3月2日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员