For a graph whose vertex set is a finite set of points in $\mathbb R^d$, consider the closed (open) balls with diameters induced by its edges. The graph is called a (an open) Tverberg graph if these closed (open) balls intersect. Using the idea of halving lines, we show that (i) for any finite set of points in the plane, there exists a Hamiltonian cycle that is a Tverberg graph; (ii) for any $n$ red and $n$ blue points in the plane, there exists a perfect red-blue matching that is a Tverberg graph. Using the idea of infinite descent, we prove that (iii) for any even set of points in $\mathbb R^d$, there exists a perfect matching that is an open Tverberg graph; (iv) for any $n$ red and $n$ blue points in $ \mathbb R^d $, there exists a perfect red-blue matching that is a Tverberg graph.
翻译:对于其顶点设置为 $mathbb R ⁇ d$ 的有限点数的图形, 请考虑其边缘引致直径的封闭( 开放) 球球。 如果这些闭( 开放) 球相互交错, 则该图称为( 开放的) Tverberg 图。 我们使用将线减半的想法, 显示 (一) 飞机上任何固定的一组点数都存在汉密尔顿周期, 即 Tverberg 图 ;(二) 对于飞机上的任何红色和蓝色点数, 都存在完美的红蓝色匹配值, 即 Tverberg 图 。 我们使用无限下降的概念, 证明 (三) 对于任何一组点数, $\ mathbb R ⁇ d$, 都存在一个完美的匹配值为开放 Tverberg 图 ;(四) 对于任何红色和 美元蓝点, 美元为 $\ mathbb R ⁇ d$, 则存在完美的红蓝色匹配值, 即 Tverberg 图表 。