The Chernoff-Cram\`er bound is a widely used technique to analyze the upper tail bound of random variable based on its moment generating function. By elementary proofs, we develop a user-friendly reverse Chernoff-Cram\`er bound that yields non-asymptotic lower tail bounds for generic random variables. The new reverse Chernoff-Cram\`er bound is used to derive a series of results, including the sharp lower tail bounds for the sum of independent sub-Gaussian and sub-exponential random variables, which matches the classic Hoefflding-type and Bernstein-type concentration inequalities, respectively. We also provide non-asymptotic matching upper and lower tail bounds for a suite of distributions, including gamma, beta, (regular, weighted, and noncentral) chi-squared, binomial, Poisson, Irwin-Hall, etc. We apply the result to develop matching upper and lower bounds for extreme value expectation of the sum of independent sub-Gaussian and sub-exponential random variables. A statistical application of sparse signal identification is finally studied.
翻译:Chernoff-Cram ⁇ er捆绑是一种广泛使用的技术,用来根据随机变量的瞬间生成功能分析随机变量的上尾框。 通过基本证明,我们开发了一个方便用户的逆向 Chernoff-Cram ⁇ er捆绑,为通用随机变量产生非静态的下尾框。 新的逆向 Chernoff-Cram ⁇ er绑绑用来得出一系列结果, 包括独立的亚高巴和亚高频随机变量的尖性下尾框, 与经典的Hoffelding型和Bernstein型的浓度不平等相匹配。 我们还为一组分布的组合提供了非自动匹配的上下尾圈, 包括伽马、 β、 (正常、 加权、 非中) 奇夸德、 binomial、 Poisson、 Irwin-Hall 等。 我们应用这一结果来匹配独立亚巴西亚和亚零星级随机变量组合的极端值期望值。