Gesture recognition is a fundamental tool to enable novel interaction paradigms in a variety of application scenarios like Mixed Reality environments, touchless public kiosks, entertainment systems, and more. Recognition of hand gestures can be nowadays performed directly from the stream of hand skeletons estimated by software provided by low-cost trackers (Ultraleap) and MR headsets (Hololens, Oculus Quest) or by video processing software modules (e.g. Google Mediapipe). Despite the recent advancements in gesture and action recognition from skeletons, it is unclear how well the current state-of-the-art techniques can perform in a real-world scenario for the recognition of a wide set of heterogeneous gestures, as many benchmarks do not test online recognition and use limited dictionaries. This motivated the proposal of the SHREC 2021: Track on Skeleton-based Hand Gesture Recognition in the Wild. For this contest, we created a novel dataset with heterogeneous gestures featuring different types and duration. These gestures have to be found inside sequences in an online recognition scenario. This paper presents the result of the contest, showing the performances of the techniques proposed by four research groups on the challenging task compared with a simple baseline method.
翻译:定位是使各种应用情景(如混合现实环境、不触摸的公共亭、娱乐系统等)中的新互动范式得以实现的基本工具。现在,通过低成本追踪器(Ultraleap)和MR Headets(Hololens,Oculus Quest)提供的软件或视频处理软件模块(如Google Mediaspip)提供的软件估计的软件,可以直接从手动骨架流中直接识别手势。尽管最近从骨骼的手势和行动识别方面有所进步,但尚不清楚当前最先进的技术在现实世界情景中如何在承认一系列广泛的多元手势方面表现得更好,因为许多基准并不测试在线识别和使用有限的词典。这促使SHREC 20211的轨道: 野生Skeleton手腕识别系统。关于这场竞赛,我们创建了一个带有不同类型和持续时间的混杂手势的新数据集。这些手势势在网上识别情景中的序列中可找到。本文展示了一场挑战性研究的简单结果,展示了四项任务的基本任务。