General-purpose VLMs demonstrate impressive capabilities, but their opaque training on uncurated internet data poses critical limitations for high-stakes decision-making, such as in neurosurgery. We present CNS-Obsidian, a neurosurgical VLM trained on peer-reviewed literature, and demonstrate its clinical utility versus GPT-4o in a real-world setting. We compiled 23,984 articles from Neurosurgery Publications journals, yielding 78,853 figures and captions. Using GPT-4o and Claude Sonnet-3.5, we converted these into 263,064 training samples across three formats: instruction fine-tuning, multiple-choice questions, and differential diagnosis. We trained CNS-Obsidian, a fine-tune of the 34-billion parameter LLaVA-Next model. In a blinded, randomized trial at NYU Langone Health (Aug 30-Nov 30, 2024), neurosurgery consultations were assigned to either CNS-Obsidian or a HIPAA-compliant GPT-4o endpoint as diagnostic co-pilot after consultations. Primary outcomes were diagnostic helpfulness and accuracy, assessed via user ratings and presence of correct diagnosis within the VLM-provided differential. CNS-Obsidian matched GPT-4o on synthetic questions (76.13% vs 77.54%, p=0.235), but only achieved 46.81% accuracy on human-generated questions versus GPT-4o's 65.70% (p<10-15). In the randomized trial, 70 consultations were evaluated (32 CNS-Obsidian, 38 GPT-4o) from 959 total consults (7.3% utilization). CNS-Obsidian received positive ratings in 40.62% of cases versus 57.89% for GPT-4o (p=0.230). Both models included correct diagnosis in approximately 60% of cases (59.38% vs 65.79%, p=0.626). Domain-specific VLMs trained on curated scientific literature can approach frontier model performance despite being orders of magnitude smaller and less expensive to train. This establishes a transparent framework for scientific communities to build specialized AI models.
翻译:暂无翻译