Characterization of joint probability distribution for large networks of random variables remains a challenging task in data science. Probabilistic graph approximation with simple topologies has practically been resorted to; typically the tree topology makes joint probability computation much simpler and can be effective for statistical inference on insufficient data. However, to characterize network components where multiple variables cooperate closely to influence others, model topologies beyond a tree are needed, which unfortunately are infeasible to acquire. In particular, our previous work has related optimal approximation of Markov networks of tree-width k >=2 closely to the graph-theoretic problem of finding maximum spanning k-tree (MSkT), which is a provably intractable task. This paper investigates optimal approximation of Markov networks with k-tree topology that retains some designated underlying subgraph. Such a subgraph may encode certain background information that arises in scientific applications, for example, about a known significant pathway in gene networks or the indispensable backbone connectivity in the residue interaction graphs for a biomolecule 3D structure. In particular, it is proved that the \beta-retaining MSkT problem, for a number of classes \beta of graphs, admit O(n^{k+1})-time algorithms for every fixed k>= 1. These \beta-retaining MSkT algorithms offer efficient solutions for approximation of Markov networks with k-tree topology in the situation where certain persistent information needs to be retained.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年5月11日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员