In this work we present multi-derivative implicit-explicit (IMEX) Runge--Kutta schemes. We derive their order conditions up to third order, and show that such methods can preserve positivity (and more generally strong stability) with a time-step restriction independent of the stiff term, under mild assumptions on the operators. We present sufficient conditions under which such methods are positivity preserving and asymptotic preserving (AP) when applied to a range of problems, including a hyperbolic relaxation system, the Broadwell model, and the Bhatnagar-Gross-Krook (BGK) kinetic equation. Previous efforts to devise such methods have used an IMEX Runge--Kutta framework plus a second derivative final correction. In this work, we extend this approach to include derivative information at any stage of the computation. This multi-derivative IMEX approach allowed us to find a second order AP and positivity preserving method that improves upon previous work in terms of the allowable time-step size. Furthermore, this approach produces a third order method that is AP and positivity preserving for a time-step independent of the stiff term, a feature not possessed by any of the existing third-order IMEX schemes. We present numerical results to support the theoretical results, on a variety of problems.
翻译:在这项工作中,我们提出了多衍生的隐含解释(IMEX)龙格-库塔(Runge-Kutta)计划。我们从这些方法的顺序条件到第三顺序,并表明这些方法可以保持积极性(以及更一般而言强大的稳定性),在操作者的轻度假设下,不受僵硬的术语限制的时间步限制;我们提出了充分的条件,根据这些条件,在应用到一系列问题时,这些方法具有积极性和无积极性(AP),包括双曲放松系统、宽广韦尔模型和Bhatnagar-Gross-Krook(BGKKK)动力等。以前设计这些方法的努力使用了IMEX Runge-Kutta框架加上第二次衍生最后更正。在这项工作中,我们扩展了这一方法,在计算的任何阶段都包括衍生信息。这种多衍生的IMEX方法使我们能够找到第二个顺序和有积极性的保护方法,在可允许的时步尺寸方面改进了以前的工作。此外,这一方法产生了第三个顺序方法,是AP和真实性方法,在目前一个不独立的机序-I系统上维持了时间段的结果。我们没有掌握的任何硬性数据特征。