Focusing on regression based analysis of extremes in a presence of systematically missing covariates, this work presents a data-driven spatio-temporal regression based clustering of threshold excesses. It is shown that in a presence of systematically missing covariates the behavior of threshold excesses becomes nonstationary and nonhomogenous. The presented approach describes this complex behavior by a set of local stationary Generalized Pareto Distribution (GPD) models, where the parameters are expressed as regression models, and a latent spatio-temporal switching process. The spatio-temporal switching process is resolved by the nonparametric Finite Element Methodology for time series analysis with Bounded Variation of the model parameters (FEM-BV). The presented FEM-BV-GPD approach goes beyond strong a priori assumptions made in standard latent class models like Mixture Models and Hidden Markov Models. In addition, it provides a pragmatic description of the underlying dependency structure. The performance of the framework is demonstrated on historical precipitation data for Switzerland and compared with the results obtained by the standard methods on the same data.


翻译:以在系统缺失的共差条件下对极端进行回归分析为重点,这项工作展示了一种基于数据驱动的片段-时态回归模型组合,显示在系统缺失的临界过量行为发生共差的情况下,临界过量行为变得非静止和非对等。介绍的方法描述了一套当地固定的Pareto分布模型(GPD)的复杂行为,其中参数表现为回归模型,以及潜在的片段-时态切换过程。空间-时态切换过程通过非对称定时序列方法(FEM-BV)解决。 提出的FEM-BV-GPD方法超越了在像Mixtures模型和隐藏的Markov模型等标准潜伏级模型中所作的强势假设。此外,它提供了对潜在依赖结构的务实描述。框架的绩效通过瑞士历史降水数据演示,并与同一数据的标准方法取得的结果相比较。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
159+阅读 · 2020年1月16日
【干货】大数据入门指南:Hadoop、Hive、Spark、 Storm等
专知会员服务
95+阅读 · 2019年12月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员