Statistical learning is the process of estimating an unknown probabilistic input-output relationship of a system using a limited number of observations; a statistical learning machine (SLM) is the algorithm, function, model, or rule, that learns such a process; and machine learning (ML) is the conventional name of this field. ML and its applications are ubiquitous in the modern world. Cyberphysical systems such as Automatic target recognition (ATR) in military applications, computer aided diagnosis (CAD) in medical imaging, DNA microarrays in genomics, optical character recognition (OCR), speech recognition (SR), spam email filtering, stock market prediction, etc., are few examples and applications for ML; diverse fields but one theory. In particular, ML has gained a lot of attention in the field of cyberphysical security, especially in the last decade. It is of great importance to this field to design detection algorithms that have the capability of learning from security data to be able to hunt threats, achieve better monitoring, master the complexity of the threat intelligence feeds, and achieve timely remediation of security incidents. The field of ML can be decomposed into two basic subfields: \textit{construction} and \textit{assessment}. We mean by \textit{construction} designing or inventing an appropriate algorithm that learns from the input data and achieves a good performance according to some optimality criterion. We mean by \textit{assessment} attributing some performance measures to the constructed ML algorithm, along with their estimators, to objectively assess this algorithm.


翻译:统计学习是利用数量有限的观测来估计一个系统未知的概率性输入-输出关系的过程;统计学习机器(SLM)是算法、函数、模型或规则,可以学习这样一个过程;机器学习(ML)是这个领域的常规名称。ML及其应用在现代世界中无处不在。军事应用中的自动目标识别(ATR)等网络物理系统、计算机辅助诊断(CAD)医学成像、基因组的DNA微粒学、光学字符识别(OCR)、语音识别(SR)、垃圾邮件过滤、股票市场预测等等,是ML的少数例子和应用;不同的领域,但有一个理论。特别是,MLL在网络物理安全领域引起了很大的关注,特别是在过去十年中。对于这个领域非常重要的是设计探测算法,它能够从安全数据中学习追踪威胁,实现更好的监测,掌握威胁信息输入的复杂程度,以及及时纠正安全事件。我们从MLDRR_SARia的实地评估可以从最优的成绩到基础的统计标准。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员