The state of art of electromagnetic integral equations has seen significant growth over the past few decades, overcoming some of the fundamental bottlenecks: computational complexity, low frequency and dense discretization breakdown, preconditioning, and so on. Likewise, the community has seen extensive investment in development of methods for higher order analysis, in both geometry and physics. Unfortunately, these standard geometric descriptors are $C^0$ at the boundary between patches with a few exceptions; as a result, one needs to define additional mathematical infrastructure to define physical basis sets for vector problems. In stark contrast, the geometric representation used for design is higher-order differentiable over the entire surface. Geometric descriptions that have $C^{2}$-continuity almost everywhere on the surfaces are common in computer graphics. Using these description for analysis opens the door to several possibilities, and is the area we explore in this paper. Our focus is on Loop subdivision based isogeometric methods. In this paper, our goals are two fold: (i) development of computational infrastructure necessary to effect efficient methods for isogeometric analysis of electrically large simply connected objects, and (ii) to introduce the notion of manifold harmonics transforms and its utility in computational electromagnetics. Several results highlighting the efficacy of these two methods are presented.


翻译:在过去几十年里,电磁整体方程式的先进状态有了显著的发展,克服了某些基本瓶颈:计算复杂度、低频率和密集离散分解分解的分解、先决条件等等。同样,社区在开发更高秩序分析方法方面,在几何和物理方面,都看到大量投资。不幸的是,这些标准的几何描述器在两处交界处是$C$0美元,但有一些例外;因此,需要界定额外的数学基础设施,以界定矢量问题的物理基础组。与此形成鲜明对比的是,设计所使用的几何代表器在全表面上是高度不同的。几乎在所有表面都有$C%2}的连续度的几何描述在计算机图形中都是常见的。利用这些描述来分析几种可能性,是我们在本文中探讨的领域。我们的重点是基于等离子测量方法的Loop亚参数。在本文中,我们的目标是两个折叠合的:(一) 开发必要的计算基础设施,以有效方法对电磁量分析整个表面进行分解分析。在数字上几乎具有$2美元连续性的方位图示电磁转换结果。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
161+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
已删除
将门创投
8+阅读 · 2019年6月13日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Arxiv
23+阅读 · 2021年3月4日
VIP会员
相关资讯
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
已删除
将门创投
8+阅读 · 2019年6月13日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Top
微信扫码咨询专知VIP会员