The recognition of handwritten mathematical expressions in images and video frames is a difficult and unsolved problem yet. Deep convectional neural networks are basically a promising approach, but typically require a large amount of labeled training data. However, such a large training dataset does not exist for the task of handwritten formula recognition. In this paper, we introduce a system that creates a large set of synthesized training examples of mathematical expressions which are derived from LaTeX documents. For this purpose, we propose a novel attention-based generative adversarial network to translate rendered equations to handwritten formulas. The datasets generated by this approach contain hundreds of thousands of formulas, making it ideal for pretraining or the design of more complex models. We evaluate our synthesized dataset and the recognition approach on the CROHME 2014 benchmark dataset. Experimental results demonstrate the feasibility of the approach.
翻译:图像和视频框中手写数学表达式的识别是一个困难和尚未解决的问题。深对流神经网络基本上是一个很有希望的方法,但通常需要大量的标签培训数据。然而,这样的大型培训数据集并不存在,无法用于手写公式的识别任务。在本文件中,我们引入了一个系统,以创建一套来自LaTeX文件的数学表达式综合培训范例。为此,我们建议建立一个新颖的、基于关注的基因对抗网络,将变异方程式转换成手写公式。该方法产生的数据集包含数十万个公式,使之适合预培训或设计更复杂的模型。我们评估了我们综合数据集和CROHME 2014 基准数据集的识别方法。实验结果显示了这种方法的可行性。