Domain generalization (DG) utilizes multiple labeled source datasets to train a generalizable model for unseen target domains. However, due to expensive annotation costs, the requirements of labeling all the source data are hard to be met in real-world applications. In this paper, we investigate a Single Labeled Domain Generalization (SLDG) task with only one source domain being labeled, which is more practical and challenging than the Conventional Domain Generalization (CDG). A major obstacle in the SLDG task is the discriminability-generalization bias: discriminative information in the labeled source dataset may contain domain-specific bias, constraining the generalization of the trained model. To tackle this challenging task, we propose a novel method called Domain-Specific Bias Filtering (DSBF), which initializes a discriminative model with the labeled source data and then filters out its domain-specific bias with the unlabeled source data for generalization improvement. We divide the filtering process into (1) feature extractor debiasing via k-means clustering-based semantic feature re-extraction and (2) classifier calibrating through attention-guided semantic feature projection. DSBF unifies the exploration of the labeled and the unlabeled source data to enhance the discriminability and generalization of the trained model, resulting in a highly generalizable model. We further provide theoretical analysis to verify the proposed domain-specific bias filtering process. Extensive experiments on multiple datasets show the superior performance of DSBF in tackling both the challenging SLDG task and the CDG task.


翻译:域常规化( DGG) 使用多标签源数据集来为隐性目标域训练通用模型。 但是, 由于成本昂贵的注释成本, 标记所有源数据的要求很难在现实世界应用程序中达到 。 在本文中, 我们调查一个单一标签标签化的域( SLDG) 任务, 只有一个源域标签, 这比常规域通用化( CDG) 更加实用, 更具挑战性。 SLDG 任务中的一个主要障碍是过滤性通用偏差偏差: 标签源数据集中的歧视性信息可能包含特定域的偏差, 限制经过训练的模型的多源数据的通用化。 为了应对这项具有挑战性的任务, 我们提出了一个名为“ Domabel- Perfective Bislation Bislough ” (DDBFBF) 的新方法, 它将一个带有标签化源代码的歧视性模型, 并随后过滤出其与无标签化源数据相关的偏差性。 我们将过滤程序分为 (1) 将基于 k- 图像分组的精度 的精选取域化精选取域, 通过基于基于基于 精度的精度的精度的精度的精选的精选的SLSLDBDGDG 和Sral 演示的精度, 的精选的精选制的SL 演示的精细制, 和制的精细制, 的SDBBSDBL 。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Challenges for Open-domain Targeted Sentiment Analysis
Arxiv
16+阅读 · 2021年7月18日
Arxiv
13+阅读 · 2021年3月29日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员